Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of proton beam profile on stress in JSNS target vessel

Kogawa, Hiroyuki; Ishikura, Shuichi*; Sato, Hiroshi; Harada, Masahide; Takatama, Shunichi*; Futakawa, Masatoshi; Haga, Katsuhiro; Hino, Ryutaro; Meigo, Shinichiro; Maekawa, Fujio; et al.

Journal of Nuclear Materials, 343(1-3), p.178 - 183, 2005/08

 Times Cited Count:8 Percentile:49.02(Materials Science, Multidisciplinary)

A cross-flow type (CFT) mercury target with flow guide blades, which has been developed for JSNS, can suppress the generation of stagnant flow region especially near the beam window where the peak heat density is generated due to spallation reaction. Then, a flat type beam window has been applied to the CFT target from the viewpoint of suppressing dynamic stress caused by a pressure wave, which has been estimated with a mercury model of the linear equation of state. The recent experimental results obtained by using a proton beam incidents to mercury led that a cutoff pressure model in the equation of state of mercury caused a suitable dynamic stress with experimental results. Dynamic stress analyses were carried out with the cutoff pressure model, in which the negative pressure less than 0.15 MPa was not generated. The generated dynamic stress in the flat beam window became much larger than that in a semi-cylindrical type window. However, the generated stress in the semi-cylindrical type beam window was over the allowable stress of SS316L under the peak heat density of 668 W/cc. In order to decrease the dynamic stress in the semi-cylindrical beam window, the incident proton beam was defocused to decrease the peak heat density down to 218 W/cm$$^{3}$$. As a result, the dynamic stress could be suppressed less than the allowable stress. On the other hand, due to defocus of the proton beam, high heat density was generated on the end of the flow guide blades, which caused high thermal stress exceeding the allowable stress. To decrease the thermal stress, several shapes of the blade ends were studied analytically, which were selected so as not to affect the mercury flow distribution. A simple thin-end blade showed low thermal stress below the allowable stress.

Journal Articles

Theory of transport properties in the $$p$$-wave superconducting state of Sr$$_2$$RuO$$_4$$; A Microscopic determination of the gap structure

Nomura, Takuji

Journal of the Physical Society of Japan, 74(6), p.1818 - 1829, 2005/06

 Times Cited Count:26 Percentile:73.56(Physics, Multidisciplinary)

We provide a detailed quantitative analysis of transport properties in the $$p$$-wave superconducting state of Sr$$_2$$RuO$$_4$$. Specifically, we calculate ultrasound attenuation rate and electronic thermal conductivity within the mean field approximation. The momentum dependence of the gap function is determined by solving the Eliashberg equation for a three-band Hubbard model with the realistic electronic structure of Sr$$_2$$RuO$$_4$$. Consequently, we obtain the temperature dependence of the transport coefficients in agreement with the experimental results.

JAEA Reports

Failure probability analysis on mercury target vessel

Ishikura, Shuichi*; Shiga, Akio*; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

JAERI-Tech 2005-026, 65 Pages, 2005/03

JAERI-Tech-2005-026.pdf:2.86MB

Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As results, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10$$^{-11}$$ in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel to detect mercury-leakage sensors.

JAEA Reports

Structural integrity of heavy liquid-metal target installed in spallation neutron facility, 4; Consideration by fracture mechanics of target container window

Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kikuchi, Kenji; Haga, Katsuhiro; Kaminaga, Masanori; Hino, Ryutaro

JAERI-Tech 2003-093, 55 Pages, 2004/01

JAERI-Tech-2003-093.pdf:5.41MB

To estimate the structural integrity of the heavy liquid-metal (Hg) target used in a MW-class neutron scattering facility, static and dynamic stress behaviors due to the incident of a 1MW-pulsed proton beam were analyzed. In the analyses, two-type target containers with semi-cylindrical type and flat type window were used as analytical models of the structural analysis codes LS-DYNA. As a result, it is confirmed that the stress generated by dynamic thermal shock becomes the largest at the center of window, and the flat type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It was confirmed to erosion damage the target container by mercury's becoming negative pressure in the window and generating the cavitation by the experiment. Therefore, it has been understood that the point top of the window was in the compression stress field by the steady state thermal stress because of the evaluation from destroying the dynamic viewpoint for the crack in the generated pit and the pit point, and the crack did not progress.

Journal Articles

Nd:YVO$$_{4}$$ and YVO$$_{4}$$ laser crystal integration by a direct bonding technique

Sugiyama, Akira; Fukuyama, Hiroyasu; Katsumata, Masaki*; Okada, Yukikatsu*

Integrated Optical Devices: Fabrication and Testing (Proceedings of SPIE Vol.4944), p.361 - 368, 2003/00

We report recent progress in bonding of crystals used in microchip lasers, Nd:YVO$$_{4}$$ and non-doped YVO$$_{4}$$ crystal that functions as a cold finger. The bonding technique consists of a dry etching process for polished crystal surfaces to be bonded and a successive transformation from hydrogen bonding to oxygen-bridged bonding at temperature below half of the melting point of crystal. Roughness of the surfaces was less than 0.2-lambda at 633 nm. After the etching of around 30 nm by an argon ion beam, the surfaces were contacted in the clean ambient, then heat treatment was done for 50 hours in a vacuum furnace. To evaluate the bonded region, we made optical scattering measurements, and laser oscillation tests pumped by a laser diode with the output power of 20 W. From these experiments, it was clear that the number of defects on the bonded surface is much smaller than that of the intrinsic defects, and the integrated crystal, improving thermal conductivity, can produce twice of laser output power compared with a usual one.

Journal Articles

Thermal shock analysis of liquid-mercury spallation target

Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Hino, Ryutaro; Date, Hidefumi*

Koon Gakkai-Shi, 28(6), p.329 - 335, 2002/11

The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1MW-pulsed proton beam were analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress.

Journal Articles

Inertia effect on thermal shock by laser beam shot

Kogawa, Hiroyuki; Futakawa, Masatoshi; Ishikura, Shuichi*; Kikuchi, Kenji; Hino, Ryutaro; Eto, Motokuni

International Journal of Impact Engineering, 25(1), p.17 - 28, 2001/01

 Times Cited Count:3 Percentile:23.89(Engineering, Mechanical)

no abstracts in English

Journal Articles

Study on spallation thermal shock for mercury target vessel

Kikuchi, Kenji; Futakawa, Masatoshi; Ishikura, Shuichi*; Kogawa, Hiroyuki

Nihon Kikai Gakkai Zairyo Rikigaku Bumon Koenkai (M&M'99) Koen Rombunshu, p.467 - 468, 1999/10

no abstracts in English

Journal Articles

Molecular dynamics simulation of atomic beam bombardment in solid surface

*; Kunugi, Tomoaki

Microscale Thermophys. Eng., 1(2), p.137 - 142, 1997/00

no abstracts in English

JAEA Reports

Study of film boiling collapse behavior during vapor explosion

; Abe, Yutaka*; *; *; Yamano, N.; Sugimoto, Jun

JAERI-Research 96-032, 152 Pages, 1996/06

JAERI-Research-96-032.pdf:4.05MB

no abstracts in English

Journal Articles

Numerical analysis for thermal waves in gas generated by impulsive heating of a boundary surface

*; Kunugi, Tomoaki

Therm. Sci. Eng., 4(3), p.1 - 7, 1996/00

no abstracts in English

11 (Records 1-11 displayed on this page)
  • 1